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Motivation — Sentence Embedding Models

* Similarity comparison of sentences/texts

* |nformation Retrieval Tasks
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Motivation — Adapters

* Pretrained once, ,,Plug’'n’Play” for different use cases

* Lower training time due to less parameters
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Motivation — Adapters

* Pretrained once, ,,Plug’'n’Play” for different use cases

* Lower training time due to less parameters

230123 Dennis Schneider Kickoff

Input-Sentences

© sebis

5



Problem Statement Tum

* Sentence Embedding Models fail to encode factual knowledge [1]

* Enhance Sentence Embedding Models by injecting Knowledge through Adapters
* Inject structured knowledge from Knowledge Graphs

* SotA: Contrastive Learning
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Methodology — Injecting Knowledge TUT

RQ1: How to inject structured Knowledge into Sentence Embedding models with adapters?

* Learning methods for Adapters

* Contrastive Learning of Graph-based data
- Anchor: (--, relation, target_a) ,Amazon is an American tech company.*
- Pos: (--, relation, target_a) ,Facebook is an American tech company.”
- Neg: (--, relation, target_b) ,Mercedes-Benz is a German car manufacturer.”

* Masked Language Modeling on Knowledge Graphs
- (“Mercedes-Benz”, “is-a”, “car manufacturer”)
— Mask out the object

- Mercedes-Benz is a <MASK>
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Methodology — Sentence Embedding Model Training TUT

* Using SotA: SImCSE [2]

* Supervised SImCSE:
* Contrastive Learning of Anchor, Positive, Negative Sentence

* Unsupervised SICSE:
* Contrastive Learning of Anchor, Dropout-Anchor, Different Sentence
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Methodology — Adapter Architectures

* K-Adapter [1]
* Houlsby [3]
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Preliminary Results TUT

RQ2: Do Knowledge Adapters improve information retrieval tasks of Sentence Embedding models?

* K-Adapter (supervised SImCSE)
* Adapter pretrained on different dataset, via Contrastive Learning
* Resulting Knowledge-infused model trained on same dataset

Model STS12 STS13 STS14 STS15 STS16  STSBenchmark  SICKRelatedness Avg.
Roberta 76.33 8736 8210 86.03 83.82 86.35 80.69 83.24
K-Adapter 77.87 8724 8256 87.17 84.62 86.26 79.93 83.68
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Preliminary Results TUT

* K-Adapter (unsupervised SImCSE)
* Adapter pretrained on different dataset, via Contrastive Learning (supervised)
* Resulting Knowledge-infused model trained on same dataset (unsupervised)

Model STS12 STS13 STS14 STS15 STS16  STSBenchmark  SICKRelatedness Avg.
Roberta 7126 83.75 7526 85.06 81.17 81.69 70.84 78.43
K-Adapter 73.37 84.89 76.21 8724 83.17 81.79 72.63 79.90
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Domain-specific Usage TUT

RQ3: How to combine domain-specific Knowledge Adapters for the scholarly domain?

* Domain adaptation for training Sentence Embedding Models difficult
* Usually no training data for specific domain available

* Train domain-specific adapters (MLM) and plug into generic STS-trained models
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Timeline Tum
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Thank you for your attention TUT

* Any questions?
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