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Motivation – Sentence Embedding Models

● Similarity comparison of sentences/texts
● Information Retrieval Tasks
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Motivation – Adapters

● Pretrained once, „Plug’n’Play“ for different use cases
● Lower training time due to less parameters
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Problem Statement

● Sentence Embedding Models fail to encode factual knowledge [1]
● Enhance Sentence Embedding Models by injecting Knowledge through Adapters

● Inject structured knowledge from Knowledge Graphs
● SotA: Contrastive Learning
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Methodology – Injecting Knowledge

RQ1: How to inject structured Knowledge into Sentence Embedding models with adapters?
● Learning methods for Adapters

● Contrastive Learning of Graph-based data
– Anchor: (--, relation, target_a) „Amazon is an American tech company.“
– Pos: (--, relation, target_a) „Facebook is an American tech company.“
– Neg: (--, relation, target_b) „Mercedes-Benz is a German car manufacturer.“

● Masked Language Modeling on Knowledge Graphs
– (“Mercedes-Benz”, “is-a”, “car manufacturer”)
– Mask out the object
– Mercedes-Benz is a <MASK>
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Methodology – Sentence Embedding Model Training

● Using SotA: SimCSE [2]
● Supervised SimCSE:

● Contrastive Learning of Anchor, Positive, Negative Sentence
● Unsupervised SimCSE:

● Contrastive Learning of Anchor, Dropout-Anchor, Different Sentence
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Methodology – Adapter Architectures

● K-Adapter [1]
● Houlsby [3]
● ...
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Preliminary Results

RQ2: Do Knowledge Adapters improve information retrieval tasks of Sentence Embedding models?
● K-Adapter (supervised SimCSE)

● Adapter pretrained on different dataset, via Contrastive Learning
● Resulting Knowledge-infused model trained on same dataset
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Model STS12 STS13 STS14 STS15 STS16 STSBenchmark SICKRelatedness Avg.

Roberta 76.33 87.36 82.10 86.03 83.82 86.35 80.69 83.24

K-Adapter 77.87 87.24 82.56 87.17 84.62 86.26 79.93 83.68
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Preliminary Results
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● K-Adapter (unsupervised SimCSE)
● Adapter pretrained on different dataset, via Contrastive Learning (supervised)
● Resulting Knowledge-infused model trained on same dataset (unsupervised)

Model STS12 STS13 STS14 STS15 STS16 STSBenchmark SICKRelatedness Avg.

Roberta 71.26 83.75 75.26 85.06 81.17 81.69 70.84 78.43

K-Adapter 73.37 84.89 76.21 87.24 83.17 81.79 72.63 79.90
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Domain-specific Usage

RQ3: How to combine domain-specific Knowledge Adapters for the scholarly domain?
● Domain adaptation for training Sentence Embedding Models difficult

● Usually no training data for specific domain available
● Train domain-specific adapters (MLM) and plug into generic STS-trained models

© sebis



230123 Dennis Schneider Kickoff 13

Timeline
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Thank you for your attention

● Any questions?
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